The Case for Rail Conversion to Hydrogen-Powered Fuel Cells

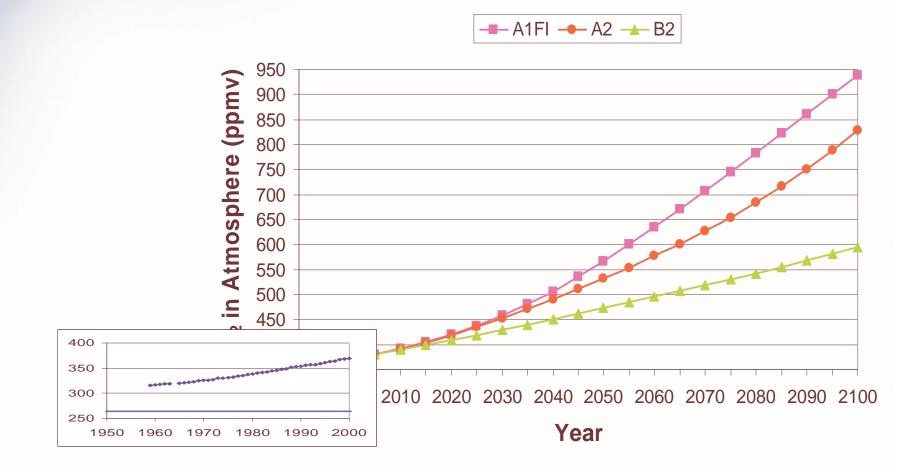
Alistair I. Miller Senior Scientific Associate Office of the Principal Scientist Atomic Energy of Canada Limited Chalk River Laboratories

> First International Hydrail Conference Charlotte, NC 2005 May 6

Canada

Since my Paper on Hydrail in 1999

- Atmospheric CO₂ has risen from 367 to 380 ppm
- Price of oil has more than doubled
- The cost of new nuclear-generated electricity has continued to fall
- The international GenIV initiative to develop advanced nuclear reactor types and the IPHE have been launched
- The "Hydrogen Economy" has entered popular consciousness
- Mooresville Hydrail Initiative is on track


CO₂ Accumulates

- Over practical time horizons, anthropogenic CO₂ can only accumulate
 - The upper 100 metres or so of the oceans and the atmosphere are in near equilibrium
 - This is deeply troubling in its own right: $CO_3^{2-} + H_2O + CO_2 \Leftrightarrow 2 HCO_3^{--}$
 - pH already –0.1; with CO₂ doubling –0.4. Can phytoplankton cope?
 - Vegetation takes up and releases on a grand scale annually
 - Atmospheric CO₂ typically falls 4 to 6 ppm between May and August
 - But net changes are small
 - Only real escape is to deep ocean
 - Some as detritus rain
 - A few special sinks
 - 1000-year circulation
- > 100-year residence in our, habitat

IPCC Projections of CO₂ Concentrations

Efficiency and more

- Enhanced efficiency is necessary, but ...
 - we have problems even with the status quo
 - in the 30 years ending in 2020, expect:
 - developed world: $4 \Rightarrow 5$ billion tonnes CO_2/a
 - developing world: $1.6 \Rightarrow 5$ billion tonnes CO_2/a
- ... Need CO₂ avoidance too
 - Determine the niches where CO₂-avoiding technologies can begin to take over
 - Rail, especially for freight, offers an alluring niche
 - It could pioneer

The Concept was Not Invented Here

- Foster & Escher, ERDA, 1976
- English *et al.*, Canadian Institute of Guided Ground Transport, 1978
- Transport Canada, 1983
- Scott & Rogner, Int. J. Hydrogen Energy, 1993
- Stehley, Taylor & Peters, US Transportation Research Board, 1994

However, sometimes the obvious bears repeating

Outline

- Trains are somewhat out of fashion but:
 - would be relatively easy to convert to LH₂ as fuel
 - LH₂ must come from a non-GHG emitting source
 - SMR hydrogen is only effective if CO_{2} sequestered and are minimal losses of CH_{4}
 - far more cheaply and flexibly than electrifying track
 - adapt readily to fuel cells
 - GHG reduction could be amplified by encouraging switch from trucks to rail
 - trucks use 2.5 to 4 times more diesel than rail
 - cutting road freight would enjoy popular public support

Ideal Features for an LH₂-Powered System

Feature	truck	plane	train	ship
Few operators	2	4	5	3
High utilization factor	4	4	4-5	5
Steady load	3	2-4	3	5
Not too dispersed	2-4	4	5	3-4
• LH ₂ volume unimportant	3	3	5	5
Weight important	3	5	1	1
• Good control of LH ₂	2	5	5	5
Minimal public anxiety	4	1	5	5

Trains first; other modes can follow

- Overall:
 - rail is obvious
 place to launch
 LH₂ fuel cells
 - ships are not bad but they wander
 - apart from the (very real) weight advantage, planes

come out poorer than ships (but have potential for reduced drag)

- trucks are in last place
- Trains are an easy niche to start with

Evolutionary Opportunities

- Begin in high-use corridors
- Only 4% of GHG transport emissions are from rail but 23% from commercial trucks
- Could even start with H₂-fueled diesels if fuel cells are not sufficiently developed
- Trains usually use at least two locomotives so have important natural redundancy

What about the Cost?

• Diesel at 2001/L • 45 ¢/L (before taxes:

EIA, Central Atlantic, 2005 March)

- Energy equivalent to LH₂ at about 3.9 ¢/kW.h for electricity
 Before credit of 2.4 to 19 ¢/L for CO₂ avoidance
 - (10 to 80 \$/tonne CO_2 : trading range \rightarrow realistic real cost)
 - = 4.1 to 5.9 ¢/kW.h
- If displacing road transport, credit is x 3 or 4 = up to 9 ¢/kW.h
- New nuclear electricity costs 3 to 4 ¢/kW.h
 - •H₂ production and liquefaction capital will add less than 1 ¢/kW.h
- Encouraging economics
 - •Fuel cell cost still need to come down

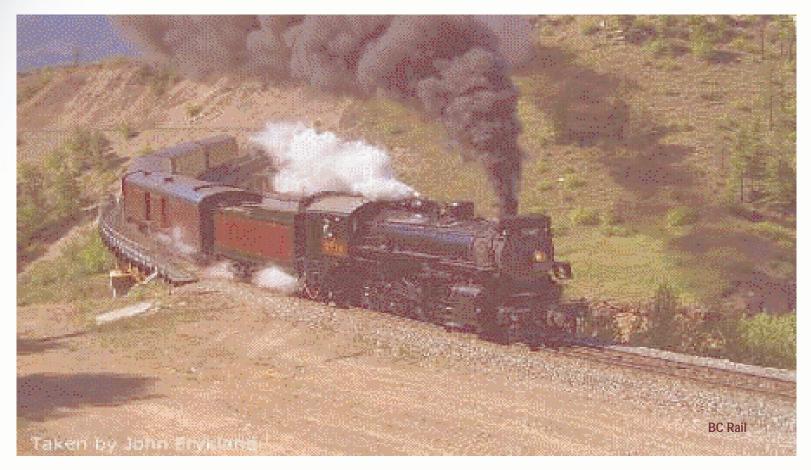
Page 11

Why not Electrify the Tracks?

- Backers of GHG-abatement projects will want high profiles ⇒ electrified track?
- In 1998, Caltrain costed electrification of an existing 124-km commuter line at 376 M\$US
- Pro-rated, the 32 km from Charlotte to Mooresville is 100 M\$US
 Should easily buy enough fuel-cell locomotives and an LH₂ facility

Incidental Advantages over Electric Trains

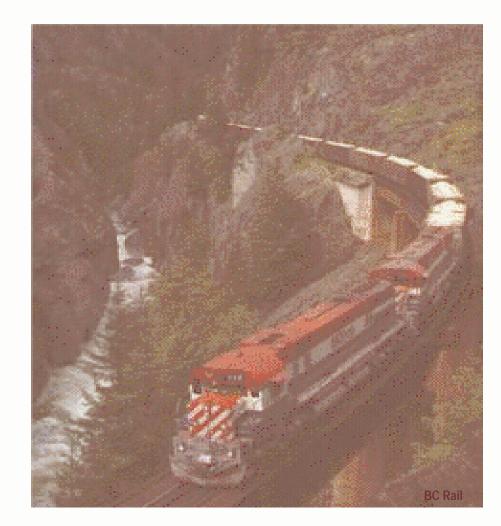
- Fuel cell/LH₂-powered locomotives can roam
 - the system can grow without major commitments to new lines
 - unlike electrification, needs no critical traffic density to justify
 - Avoids either a totally new track or much interference with existing traffic while electrifying
 - Can begin with a few prototypes
- Power demand can avoid peak periods



Off ³: a Practical Technical Way Forward

- Off rhetoric
 - saying "conserve" a 1000 times is not working
- Off road
 - wider highways and bigger trucks only slow the rate of increase
- Off carbon
 - rail is a practical starting place to start deploying non-GHG technology

Interesting progression if this were to evolve from ...



Page 15

The Ultimate in Unobtrusive Transport

With LH₂ fuel cells: \checkmark no more than a murmur of sound and almost zero **GHG** emissions A legacy we could be proud of

Future Possibilities

- With planes, LH₂ can be used to reduce drag by 30% at cruising altitudes (See Scott, D.S., Int J Hydrogen Energy, 29, (2004), 1317-1325)
- With trains, one could envisage using the cold for superconducting MagLev

If we switch to H₂, the last person around won't need to switch off the last light

With the sweep of its vision, the Mooresville Initiative can really switch the H₂ light on

Page 17

