

RTRI Fuel Cell Train

-FC Application to the Traction System-

1. Back Ground

The issue of Diesel Traction System

- -Non-Recuperative Brake
- -Emission (CO₂, NO_x SO_x)
- -Noise and Vibration

FC Commuter Train

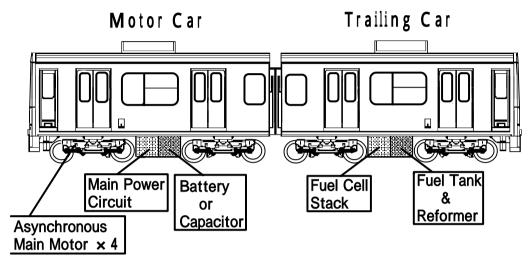
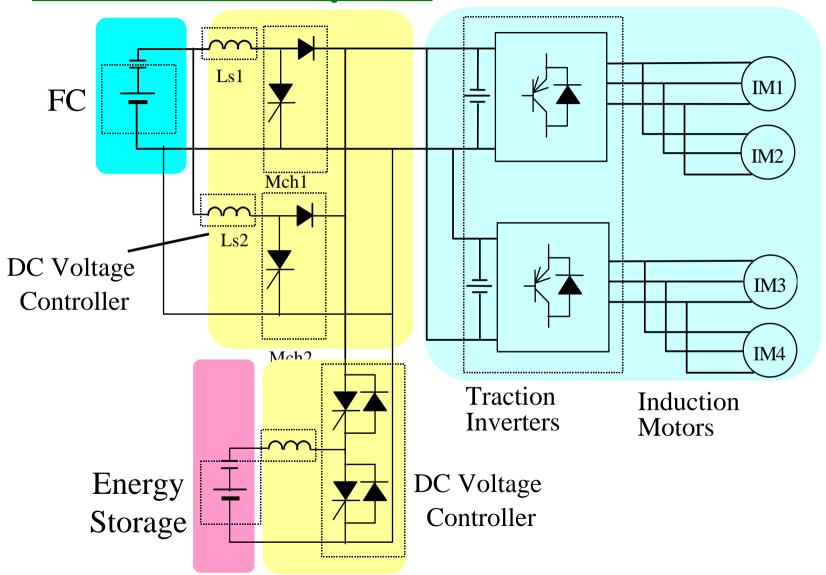



Table 2. Specification of the FC train

1	
Train Set	2Cars
Mass of Train sets (t)	62
Vehicle Dimensions (m)	$20.0 \times 2.8 \times 3.9$
Total Output(preliminary) (kW)	600
Fuel Cell System	450-
Battery or Capacitor	150
Maximum Speed(km/h)	110
Passenger Capacity	280
Running Distance	300 ~ 400
(km per day)	

FC train traction system.

Benefits on Energy Consumptions

The Assumption for the Evaluation.

Items	Values
The Running Distance	26 [km]
Stops	11
Running Time	32 [min]
Max. Speed	80 [km/h]

Result of Simulation

- DMU 1850MJ
- FC Vehicle 765MJ

(60% Fuel to Wheel Energy Saving!)

State of Art of Fuel Cell.

Items	Required	Current	Future(2010)
Power Density	$0.2 \sim 0.23$	0.2	0.3-0.4?
(kW/kg)		(Auto:0.5-1.0)	=>OK
Life time	<u>35000</u> -40000	Max 10000	50000?
(Hour)	(4-4.5 Year)	(for CRU)	
Cost	100	10,000	???
(USD/kW)			
Robustness	30[Hz] -0.5[G]	Graphite	Metal
	(JIS4031)	=>NG?	=>OK
Temp. (C)	-40-50	0-50	-40-50

Issue to be solved

Life time and Cost

H₂ Supply and Storage

Options (on Board System.)	Benefits	Back draws
Pure H ₂ (MH)	Less volume. Less loss on fueling	Heavy weight
Pure H ₂ (Comp)	Light weight	More volume More loss on fueling
Pure H ₂ (Lq.)	Longer running distance	More loss on fueling
On board Reforming	Longest running distance	On-board reformer. More loss on reform.

Compressed H₂ on board (Light weight and less energy loss to refuel H₂)

JR

First in Test!

Railway Technical Research Institute

Thank you for your attention!

Railway Technical Research Institute-