Optimal Location of Refueling Stations for Hydrogen Railroads Michael Kuby Arizona State University Department of Geography

First Annual Hydrail Conference Charlotte, NC May 6, 2005

Outline of Presentation

1. Why Hydrail?
2. Prior Research on Locating Refueling Stations
3. The Flow-Refueling Location Model
4. Extending the Model to Railroads
5. Conclusions and Future Work

Hydrogen Road Transport Faces a Chicken-and-Egg Dilemma...

Which Comes First?

Mass
Production of
Vehicles

Refueling Infrastructure

Hydrail: No Dilemma!

Source: http://www.uprr.com/customers/intermodal/emp/graphics/emp_map_Ig2.gif

Why Hydrail?

	Rail	Highway
Carriers	7 Class I 549 Total Railroads	662,000 motor carriers
Powered Vehicles	20,000 locomotives (53\% pre-1990)	$79,000,000$ trucks $139,000,000$ cars
Miles	170,000	$3,906,000$
Freight ton- miles	1.60 billion	1.26 billion
CO_{2} emissions	43 Tg	341 Tg (trucking)

Purpose of Our Research

To facilitate the transition to a hydrogen economy by optimizing the development of the hydrogen refueling infrastructure.

Prior Research on Optimal Location of Refueling Stations

GIS Approaches

National Renewable Energy Lab (NREL)

California Hydrogen Highway

Data Source: FHMEA, BTS, and DOT (D, $A A_{\text {, }}$ and IA)
Figure 4. Sample of GIS Data Being Used to Evaluate Optimal H_{2} Refueling Station Placement at a National Level

Maximize Arc Flows

- Goodchild and Noronha (1987)

Note: Map is not from Goodchild and Noronha, but for illustrative purposes only.

Minimum Spanning Tree

- Bapna et al. (2002)

Miminimize Average Distance

- Nicholas (2004)

Flow-Capturing Models

- Hodgson (1990)
- Demand consists of paths, not points.
- Locate p facilities to capture the maximum volume of passing flows.

The Flow-Refueling Location Model (FRLM)

- Flow capturing assumes that a single facility anywhere on the path can capture the demand.
- For flow refueling, however, the limited range of vehicles means that some trips require multiple refuelings.
- Range = maximum distance a vehicle can travel between refuelings.

Dealing with Vehicle Range

- Round-trip distance.
- Nodes not necessarily optimal.
- Several facilities may be necessary to refuel a path.

The Flow-Refueling Location Model is an Integer Linear Program

Objective

$$
\operatorname{Max} \sum_{q \in Q} f_{q} Y_{q}
$$

Constraints

$$
\begin{array}{ll}
\sum_{h \in H} b_{q h} v_{h} \geq Y_{q} \quad \forall q \in Q \\
a_{h k} X_{k} \geq v_{h} \quad \forall h \in H ; k \in K \\
\sum_{k \in K} X_{k}=p \\
X_{k} \in\{0,1\} \forall k & \\
0 \leq Y_{q} \leq 1 \forall q ; 0 \leq v_{h} \leq 1 \forall h
\end{array}
$$

Variables

$Y_{q}=1$ if path q is refueled; else 0
$v_{h}=1$ if all facilities in combination h
are open; else 0
$X_{k}=1$ if facility k is open; else 0

Coefficients

$f_{q}=$ flow volume on path q
$b_{q h}=1$ if combo h can refuel path q
$a_{h k}=1$ if combo h includes facility k
$p=$ number of facilities to be located

Arizona Highway Case Study

- 25 largest cities.
- Main Interstate, US, and AZ highways.
- Inter-city flows only.

Tradeoff Curve: Refuelable Trips vs. Number of Facility Locations

Number of Facility Locations

p=2, Range=50, Nodes Only

$p=3$, Range=50, Nodes Only

$p=4$, Range=50, Nodes Only

$p=5$, Range=50, Nodes Only

Tradeoff Curve: Refuelable Trips vs. Number of Facility Locations

Number of Facility Locations

p=4, Range=50, Nodes+25 Minimax Pts

$p=4$, Range=100, Nodes+25 Minimax Pts

p=4, Range=200, Nodes Only

Tradeoff Curve: Refuelable Trips vs. Number of Facility Locations

Number of Facility Locations

$p=15$, Range=100, Nodes+50 Pts

Current and Future Research

- Capacitated facilities
- Faster solution methods
- Hydrogen rental car fleet in Orlando (funded by Florida Hydrogen Initiative)
- Detouring off shortest paths

H_{2} Refueling—Road vs. Rail: Detouring Less Likely for Rail

Road

Rail

Source: 2004 Transportation Statistics Annual Report, Figures 2-13, 2-14.

H_{2} Refueling-Road vs. Rail: Railroads Minimize Total Costs

http://www.uprr.com/aboutup/maps/sysmap/index.shtml

- Railroads own and operate vehicles and stations \rightarrow
- Minimize total costs consisting of the sum of fixed and variable costs of H_{2} supply, H_{2} refueling, and train re-routing.

Remote Refueling by Tender Car Delivery, Instead of Re-routing Trains or Building More Stations

Source: http://www.snowcrest.net/photobob/ccnf30.html

H_{2} Refueling—Road vs. Rail: Max Range (if any) Depends on Weight and Number of Hydrogen Tenders

H_{2} Refueling-Road vs. Rail: Economies of Scale in H_{2} Generating Plants/Stations

Source: http://www.uprr.com/aboutup/history/bailey/byserv.shtml

Source: http://www.hynet.info/.

H_{2} Refueling-Road vs. Rail: Economies of Scale in H_{2} Generating Plants/Stations

U-Shaped Long Run Average Cost Curve for Alternative
Plant Sizes Showing Economies of Large-Scale Production

SRAC $=$ Short run average cost curves for alternative size plants.
LRAC $=$ Long run average cost curve.

Quantity

Conclusions

- Location of refueling facilities has been overlooked in the optimization literature.
- Flow-capturing model provides good basis.
- Vehicle range necessitates use of facility combinations.
- Must add some locations on links.

Conclusions for Modeling Rail Refueling

- Minimize total costs of transport and refueling
- Remote refueling
- Variable and extendable range
- Economies of scale

Acknowlegements

- This research was funded by NSF (Decision Risk and Management Science Program).
- FRLM paper has been published in Socioeconomic Planning Sciences.
- Added-Node Dispersion paper submitted to Geographical Analysis.
- MIP models solved with Xpress-MP software.

