FUELCELL RAIL

Arnold R. Miller, PhD

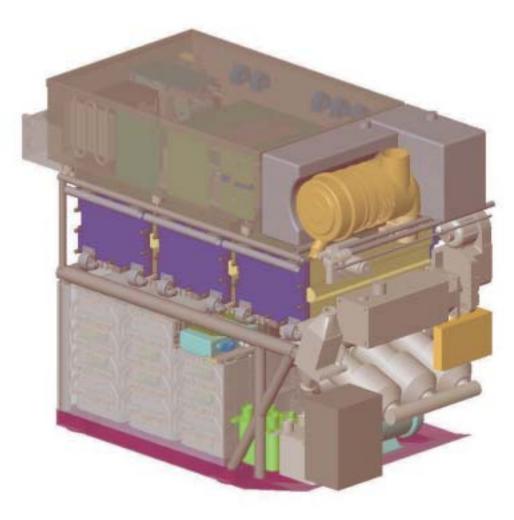
President Vehicle Projects LLC Denver, Colorado, USA

Background FUELCELL MINE LOCOMOTIVE

- Completed 2002
- 3.6 metric tons
- 17 kW PEM fuelcells
- 3 kg hydrogen as metal hydride

Background FUELCELL MINE LOADER

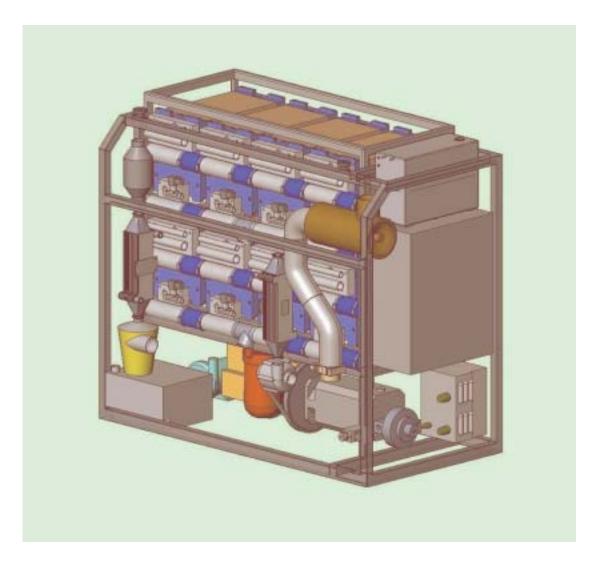
- 23 metric tons
- 160 kW (max) fuelcellbattery hybrid
- 90 kW (cont) PEM fuelcells
- 15 kg hydrogen as metal hydride



Caterpillar-Elphinstone diesel base vehicle

FUELCELL STACK UNDER TEST

LOADER FUELCELL POWERPLANT


Overview FUELCELL LOCOMOTIVE

- 109 metric-ton roadswitcher
- 1.2 MW (gross) fuelcell power
- No traction battery
- 250 kg hydrogen storage

Photo of diesel-electric base vehicle by Shane Deemer

LOCO 150 KW POWERPLANT MODULE

RAILWAY LOCOMOTIVE ISSUES

• Energy security (mainly of imported oil)

- Diminishing reserves
- Political instability of exporting regions

• Energy cost

- Fuel cost/efficiency
- Fuel price: volatile, high, increasing

• Emissions-particulate and acoustic noise

- Infrastructure cost for electrification
 - Coal or nuclear could solve above problems except efficiency
 - Cost prohibitive for low population density

HYDROGEN STORAGE

Commercially Established Methods

- Direct Storage of Hydrogen
 - Compressed gas
 - Liquid
 - Reversible metal hydrides
- Onboard Reforming of Feedstock
 - Hydrocarbons, for example, methane (CH₄)
 - Methanol
- Onboard Dissociation of Ammonia (NH₃)

PROS AND CONS

• Positive

- Hydrogen and ammonia are renewable (nuclear primary energy)
- Highest efficiency of the technologies
- Zero vehicle emissions, low acoustic noise
- Relatively low infrastructure cost
- Neutral
 - Safety
 - Performance

• Negative

- Present high capital cost of fuelcells and hydrogen storage
- Requires establishment of a new fuel infrastructure

PROGNOSTICATIONS

- Primary energy: Nuclear, especially thermal water splitting
- Onboard fuel
 - Advanced metal hydrides for subways (for safety)
 - Advanced metal hydrides for switchers and light rail (depot-centric)
 - Ammonia, methanol, or LNG for line-haul, high-speed, or commuter rail

• Fuelcell types

- PEM for switchers, subways, and light rail (for power density)
- PEM or SOFC (efficiency) for line-haul, high-speed, or commuter rail

• Hybridity

- Battery or flywheel for subways and light rail (for accel/deccel with all axles powered)
- None for switchers, line-haul, high-speed, and commuter rail

CONCLUSIONS

- Fuelcell locomotives potentially offer the best of two worlds:
 - (1) Flexibility, efficiency, and low infrastructure cost of the dieselelectric locomotive
 - (2) Zero vehicle emissions, low noise, and oil-independence of the catenary electric locomotive
- The US should commence development of this technology ⇒ energy security, efficiency, environmental quality